Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(30): 14557-14586, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37554548

RESUMO

Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.

2.
Proc Natl Acad Sci U S A ; 120(3): e2217035120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626548

RESUMO

Solvated electrons are powerful reducing agents capable of driving some of the most energetically expensive reduction reactions. Their generation under mild and sustainable conditions remains challenging though. Using near-ultraviolet irradiation under low-intensity one-photon conditions coupled with electrochemical and optical detection, we show that the yield of solvated electrons in water is increased more than 10 times for nanoparticle-decorated electrodes compared to smooth silver electrodes. Based on the simulations of electric fields and hot carrier distributions, we determine that hot electrons generated by plasmons are injected into water to form solvated electrons. Both yield enhancement and hot carrier production spectrally follow the plasmonic near-field. The ability to enhance solvated electron yields in a controlled manner by tailoring nanoparticle plasmons opens up a promising strategy for exploiting solvated electrons in chemical reactions.


Assuntos
Elétrons , Nanopartículas , Luz , Raios Ultravioleta , Água
3.
Chem Rec ; 21(6): 1473-1488, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33661570

RESUMO

Femtosecond (fs) laser trapping dynamics is summarized for silica, hydrophobically modified silica, and polystyrene nanoparticles (NPs) in aqueous solution, highlighting their distinct optical trapping dynamics under CW laser. Mutually repulsive silica nanoparticles are tightly confined under fs laser compared to CW laser trapping and, upon increasing laser power, they are ejected from the focus as an assembly. Hydrophobically modified silica and polystyrene (PS) NPs are sequentially ejected just like a stream or ablated, giving bubbles. The ejection and bubbling take place with the direction perpendicular to laser polarization and its direction is randomly switched from one to the other. These characteristic features are interpreted from the viewpoint of single assembly formation of NPs at an asymmetric position in the optical potential. Temporal change in optical forces map is prepared for a single PS NP by calculating scattering, gradient, and temporal forces. The relative contribution of the forces changes with the volume increase of the assembly and, when the pushing force along the trapping pulse propagation overcome the gradient in the focal plane, the assembly undergoes the ejection. Further fs multiphoton absorption is induced for the larger assembly leading to bubble generation. The assembling, ejection, and bubbling dynamics of NPs are characteristic features of pulsed optical force and are considered as a new platform for developing new material fabrication method.

4.
Nanoscale ; 12(20): 11063-11069, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32400800

RESUMO

Graphene, a single atomic layer of sp2 hybridized carbon, is a promising material for future devices due to its excellent optical and electrical properties. Nevertheless, for practical applications, it is essential to deposit patterned metals on graphene in the micro and nano-meter scale in order to inject electrodes or modify the 2D film electrical properties. However, conventional methods for depositing patterned metals such as lift-off or etching leave behind contamination. This contamination has been demonstrated to deteriorate the interesting properties of graphene such as its carrier mobility. Therefore, to fully exploit the unique properties of graphene, the controlled and nano-patterned deposition of metals on graphene films without the use of a sacrificial resist is of significant importance for graphene film functionalization and contact deposition. In this work, we demonstrate a practical and low-cost optical technique of direct deposition of metal nano-patterned structures without the need for a sacrificial lift-off resist. The technique relies on the laser induced reduction of metal ions on a graphene film. We demonstrate that this deposition is optically driven, and the resolution is limited only by the diffraction limit of the light source being used. Patterned metal features as small as 270 nm in diameter are deposited using light with a wavelength of 532 nm and a numerical aperture of 1.25. Deposition of different metals such as Au, Ag, Pd, Pb and Pt is shown. Additionally, change in the Fermi level of the graphene film through the nano-patterned metal is demonstrated through the electrical characterization of four probe field effect transistors.

5.
J Phys Chem B ; 118(49): 14010-6, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24926894

RESUMO

The development in optical trapping and manipulation has been showing rapid progress, most of it is in the small particle sizes in nanometer scales, substituting the conventional continuous-wave lasers with high-repetition-rate ultrashort laser pulse train and nonlinear optical effects. Here, we evaluate two-photon absorption in optical trapping of 2.7 nm-sized CdTe quantum dots (QDs) with high-repetition-rate femtosecond pulse train by probing laser intensity dependence of both Rayleigh scattering image and the two-photon-induced luminescence spectrum of the optically trapped QDs. The Rayleigh scattering imaging indicates that the two-photon absorption (TPA) process enhances trapping ability of the QDs. Similarly, a nonlinear increase of the two-photon-induced luminescence with the incident laser intensity fairly indicates the existence of the TPA process.

6.
Sci Prog ; 96(Pt 1): 1-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23738434

RESUMO

Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.


Assuntos
DNA/química , Nanopartículas/química , Pinças Ópticas , Proteínas/química , Humanos , Lasers , Luz , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Pontos Quânticos
7.
J Phys Chem B ; 117(16): 4536-40, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23259728

RESUMO

We experimentally demonstrate reordering throughout the inside of an individual bipolar nematic liquid-crystalline microdroplet optically trapped by a highly focused laser beam, when the laser powers are above a definite threshold. The threshold depends on the droplet size and laser polarization. A physical interpretation of the results is presented by considering the nonlocal orientations of the nematic liquid-crystal molecules in the droplets with the dimensions on the order of the focal spot diameter or larger. On the basis of the finite size approximation, we show that the dependence of threshold power on the droplet size is calculated to be in qualitative agreement with the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...